• Skip to primary navigation
  • Skip to main content
  • Skip to footer

Cisco Umbrella

Enterprise network security

  • Contact Sales
  • Login
    • Umbrella Login
    • Cloudlock Login
  • Why Us
    • Why Cisco Umbrella
      • Why Try Umbrella
      • Why DNS Security
      • Why Umbrella SASE
      • Our Customers
      • Customer Stories
      • Why Cisco Secure
    • Fast Reliable Cloud
      • Global Cloud Architecture
      • Cloud Network Status
      • Global Cloud Network Activity
    • Unmatched Intelligence
      • A New Approach to Cybersecurity
      • Interactive Intelligence
      • Cyber Attack Prevention
      • Umbrella and Cisco Talos Threat Intelligence
    • Extensive Integrations
      • IT Security Integrations
      • Hardware Integrations
      • Meraki Integration
      • Cisco Umbrella and SecureX
  • Products
    • Cisco Umbrella Products
      • Cisco Umbrella Cloud Security Service
      • Recursive DNS Services
      • Cisco Umbrella SIG
      • Umbrella Investigate
      • What’s New
    • Product Packages
      • Cisco Umbrella Package Comparison
      • – DNS Security Essentials Package
      • – DNS Security Advantage Package
      • – SIG Essentials Package
      • – SIG Advantage Package
      • Umbrella Support Packages
    • Functionality
      • DNS-Layer Security
      • Secure Web Gateway
      • Cloud Access Security Broker (CASB)
      • Cloud Data Loss Prevention (DLP)
      • Cloud-Delivered Firewall
      • Cloud Malware Protection
      • Remote Browser Isolation (RBI)
    • Man on a laptop with headphones on. He is attending a Cisco Umbrella Live Demo
  • Solutions
    • SASE & SSE Solutions
      • Cisco Umbrella SASE
      • Secure Access Service Edge (SASE)
      • What is SASE
      • What is Security Service Edge (SSE)
    • Functionality Solutions
      • Web Content Filtering
      • Secure Direct Internet Access
      • Shadow IT Discovery & App Blocking
      • Fast Incident Response
      • Unified Threat Management
      • Protect Mobile Users
      • Securing Remote and Roaming Users
    • Network Solutions
      • Guest Wi-Fi Security
      • SD-WAN Security
      • Off-Network Endpoint Security
    • Industry Solutions
      • Government and Public Sector Cybersecurity
      • Financial Services Security
      • Cybersecurity for Manufacturing
      • Higher Education Security
      • K-12 Schools Security
      • Healthcare, Retail and Hospitality Security
      • Enterprise Cloud Security
      • Small Business Cybersecurity
  • Resources
    • Content Library
      • Top Resources
      • Cybersecurity Webinars
      • Events
      • Research Reports
      • Case Studies
      • Videos
      • Datasheets
      • eBooks
      • Solution Briefs
    • International Documents
      • Deutsch/German
      • Español/Spanish
      • Français/French
      • Italiano/Italian
      • 日本語/Japanese
    • For Customers
      • Support
      • Customer Success Webinars
      • Cisco Umbrella Studio
    • Get the 2022 Cloud Scurity Comparison Guide
  • Trends & Threats
    • Market Trends
      • Hybrid Workforce
      • Rise of Remote Workers
      • Secure Internet Gateway (SIG)
    • Security Threats
      • How to Stop Phishing Attacks
      • Malware Detection and Protection
      • Ransomware is on the Rise
      • Cryptomining Malware Protection
      • Cybersecurity Threat Landscape
      • Global Cyber Threat Intelligence
      • Cyber Threat Categories and Definitions
    •  
    • Woman connecting confidently to any device anywhere
  • Partners
    • Channel Partners
      • Partner Program
      • Become a Partner
    • Service Providers
      • Secure Connectivity
      • Managed Security for MSSPs
      • Managed IT for MSPs
    •  
    • Person looking down at laptop. They are connecting and working securely
  • Blog
    • News & Product Posts
      • Latest Posts
      • Products & Services
      • Customer Focus
      • Feature Spotlight
    • Cybersecurity Posts
      • Security
      • Threats
      • Cybersecurity Threat Spotlight
      • Research
    •  
    • Register for a webinar - with illustration of connecting securely to the cloud
  • Contact Us
  • Umbrella Login
  • Cloudlock Login
  • Free Trial
Spotlight

OpenDNS adopts DNSCurve

By OpenDNS Team
Posted on February 23, 2010
Updated on March 6, 2020

Share

FacebookTweetLinkedIn

Editor’s note: Below is a fairly technical post from OpenDNS engineer and noted security researcher Matthew Dempsky introducing DNSCurve and sharing some thoughts on DNSSEC. Readers of this blog know Matthew has been credited with finding vulnerabilities in both Adobe Flash Player and djbdns.

Everyone in the DNS community agrees that DNS’s security model is woefully outdated. Conceived at a time when there were fewer computers on the Internet than are housed by even today’s smallest data centers, DNS unfortunately has no strong protection against malicious parties hoping to exploit web users. What little protection it does offer is mostly derived from novel uses of non-security features (e.g., UDP source port and transaction ID randomization).
For more than 15 years, the IETF has been working on DNSSEC, a set of extensions to apply digital signatures to DNS. Millions of dollars in government grants and several reboots from scratch later, DNSSEC is just starting to see real world testing. And that testing is minimal — only about 400 of the more than 85,000,000 .com domains support DNSSEC, fewer than 20% of US government agencies met their mandated December 31, 2009 deadline for DNSSEC deployment, and only two of the thirteen root zone name servers is testing with even dummy DNSSEC data.
Aside from its lack of adoption, DNSSEC isn’t even a very satisfactory solution. It adds tremendous complexity to an already fragile protocol, significantly increases DNS traffic in size, encourages questionable security practices, and hamstrings many modern uses of DNS.

Details

  • Complexity: DNSSEC has many options for enabling/disabling DNSSEC validation, with conflicting interpretations of how to handle different bits; considering people still disagree about how to handle features of DNS that have been present since its inception, I foresee these won’t be resolved anytime soon.
  • DNS traffic: Responses right now are usually limited to 512 bytes, sometimes a little more. DNSSEC enabled responses regularly exceed 1500 bytes, requiring IP fragmentation or fallback to TCP. IP fragmentation frequently fails with misconfigured firewalls and using TCP is much slower than the default UDP transport.
  • Questionable security practices: Most users are encouraged to use 512-bit or 1024-bit RSA keys. A group of hobbyists recently worked together to break all of the 512-bit keys used by Texas Instruments for signing their calculator firmware and they did so quickly and easily. The RSA company and NIST have been recommending users switch to 2048-bit keys since 2003 and 2007, respectively. Again, unfortunately, the DNSSEC standards developers are hesitant because bigger crypto is slower, and it will further push the traffic size issue.
  • Hamstrings modern uses: High traffic DNS servers can’t handle signing every response packet, so they need to pre-compute signatures. This limits how companies like Akamai and Google or projects like the NTP Pool can use DNS for global load balancing and routing users to their nearest servers. It also fundamentally hampers services like OpenDNS, which use DNS to provide content filtering and search services.
  • Efficiency: RSA is a very slow crypto standard; its only benefit is that everyone knows about it. DNSSEC can theoretically support other crypto standards, but the IETF has largely ignored efforts from interested parties to add support for faster and stronger algorithms.

So while debate about DNSSEC wears on, we’re excited to announce that OpenDNS has fully adopted another proposed DNS security solution: DNSCurve.
DNSCurve is a recent DNS extension proposal that is fully backwards compatible with the existing DNS protocol, uses much stronger cryptography than DNSSEC, and most importantly, is much simpler and much easier to implement and manage. The most significant technical distinction is that DNSSEC uses large and slow per-recordset signatures while DNSCurve uses small and fast per-packet encryption and authentication.
OpenDNS’s DNS resolvers already fully support DNSCurve today and use it whenever possible. Of course, authoritative servers need to be upgraded to support DNSCurve as well, but it’s our hope that this announcement will help to get the ball rolling on DNSCurve adoption. If you’re an authoritative DNS provider and are interested in deploying DNSCurve, we’re interested in hearing from you.

Editor’s note: Our support for DNSCurve doesn’t prevent our adoption of DNSSEC — they are not mutually exclusive. While we have reservations about DNSSEC, we can and will implement it when we see more demand and traction, but in the meantime, when we see a viable technology that can be quickly implemented to improve security for DNS users, that’s a no-brainer in our book.

Previous Post:

Previous Article

Next Post:

Next Article

Follow Us

  • Twitter
  • Facebook
  • LinkedIn
  • YouTube

Footer Sections

What we make

  • Cloud Security Service
  • DNS-Layer Network Security
  • Secure Web Gateway
  • Security Packages

Who we are

  • Global Cloud Architecture
  • Cloud Network Status
  • Cloud Network Activity
  • OpenDNS is now Umbrella
  • Cisco Umbrella Blog

Learn more

  • Webinars
  • Careers
  • Support
  • Cisco Umbrella Live Demo
  • Contact Sales
Umbrella by Cisco
208.67.222.222+208.67.220.220
2620:119:35::35+2620:119:53::53
Sign up for a Free Trial
  • Cisco Online Privacy Statement
  • Terms of Service
  • Sitemap

© 2023 Cisco Umbrella