• Skip to primary navigation
  • Skip to main content
  • Skip to footer

Cisco Umbrella

Enterprise network security

  • Contact Sales
  • Login
    • Umbrella Login
    • Cloudlock Login
  • Why Us
    • Why Cisco Umbrella
      • Why Try Umbrella
      • Why DNS Security
      • Why Umbrella SASE
      • Our Customers
      • Customer Stories
      • Why Cisco Secure
    • Fast Reliable Cloud
      • Global Cloud Architecture
      • Cloud Network Status
      • Global Cloud Network Activity
    • Unmatched Intelligence
      • A New Approach to Cybersecurity
      • Interactive Intelligence
      • Cyber Attack Prevention
      • Umbrella and Cisco Talos Threat Intelligence
    • Extensive Integrations
      • IT Security Integrations
      • Hardware Integrations
      • Meraki Integration
      • Cisco Umbrella and SecureX
  • Products
    • Cisco Umbrella Products
      • Cisco Umbrella Cloud Security Service
      • Recursive DNS Services
      • Cisco Umbrella SIG
      • Umbrella Investigate
      • What’s New
    • Product Packages
      • Cisco Umbrella Package Comparison
      • – DNS Security Essentials Package
      • – DNS Security Advantage Package
      • – SIG Essentials Package
      • – SIG Advantage Package
      • Umbrella Support Packages
    • Functionality
      • DNS-Layer Security
      • Secure Web Gateway
      • Cloud Access Security Broker (CASB)
      • Cloud Data Loss Prevention (DLP)
      • Cloud-Delivered Firewall
      • Cloud Malware Protection
      • Remote Browser Isolation (RBI)
    • Man on a laptop with headphones on. He is attending a Cisco Umbrella Live Demo
  • Solutions
    • SASE & SSE Solutions
      • Cisco Umbrella SASE
      • Secure Access Service Edge (SASE)
      • What is SASE
      • What is Security Service Edge (SSE)
    • Functionality Solutions
      • Web Content Filtering
      • Secure Direct Internet Access
      • Shadow IT Discovery & App Blocking
      • Fast Incident Response
      • Unified Threat Management
      • Protect Mobile Users
      • Securing Remote and Roaming Users
    • Network Solutions
      • Guest Wi-Fi Security
      • SD-WAN Security
      • Off-Network Endpoint Security
    • Industry Solutions
      • Government and Public Sector Cybersecurity
      • Financial Services Security
      • Cybersecurity for Manufacturing
      • Higher Education Security
      • K-12 Schools Security
      • Healthcare, Retail and Hospitality Security
      • Enterprise Cloud Security
      • Small Business Cybersecurity
  • Resources
    • Content Library
      • Top Resources
      • Cybersecurity Webinars
      • Events
      • Research Reports
      • Case Studies
      • Videos
      • Datasheets
      • eBooks
      • Solution Briefs
    • International Documents
      • Deutsch/German
      • Español/Spanish
      • Français/French
      • Italiano/Italian
      • 日本語/Japanese
    • For Customers
      • Support
      • Customer Success Webinars
      • Cisco Umbrella Studio
    • Get the 2022 Cloud Scurity Comparison Guide
  • Trends & Threats
    • Market Trends
      • Hybrid Workforce
      • Rise of Remote Workers
      • Secure Internet Gateway (SIG)
    • Security Threats
      • How to Stop Phishing Attacks
      • Malware Detection and Protection
      • Ransomware is on the Rise
      • Cryptomining Malware Protection
      • Cybersecurity Threat Landscape
      • Global Cyber Threat Intelligence
      • Cyber Threat Categories and Definitions
    •  
    • Woman connecting confidently to any device anywhere
  • Partners
    • Channel Partners
      • Partner Program
      • Become a Partner
    • Service Providers
      • Secure Connectivity
      • Managed Security for MSSPs
      • Managed IT for MSPs
    •  
    • Person looking down at laptop. They are connecting and working securely
  • Blog
    • News & Product Posts
      • Latest Posts
      • Products & Services
      • Customer Focus
      • Feature Spotlight
    • Cybersecurity Posts
      • Security
      • Threats
      • Cybersecurity Threat Spotlight
      • Research
    •  
    • Register for a webinar - with illustration of connecting securely to the cloud
  • Contact Us
  • Umbrella Login
  • Cloudlock Login
  • Free Trial
Threats

Discovery of New Malicious Domains Using Authoritative Name Server Traffic

By Dhia Mahjoub
Posted on January 19, 2013
Updated on July 16, 2020

Share

FacebookTweetLinkedIn

Authoritative DNS Overview  

Each day, OpenDNS handles an average of 40 billion recursive DNS queries that are efficiently directed to our 13 worldwide datacenters. Each data center hosts tens of DNS resolvers. When a resolver receives a recursive DNS query, it first checks if it has an answer in its cache, and replies with that answer. If there’s no answer in the cache, or if the answer has expired, then it issues a DNS upstream query to the authoritative name servers and passes the response back to the client. In other words, a recursive resolver performs two main operations: reply from its cache, or issue a query up the DNS authoritative name servers chain.

In this blog, we discuss a new, simple-yet-effective method of mining for new malicious domains. The technique is based on the responses of authoritative name servers that are hosted on IPs tied to known suspicious or malicious domains.

In authoritative DNS traffic, each DNS message has the IP of the name server that sent the reply followed by the raw DNS message. A sample authoritative DNS message is displayed below. The IP address of the name server that sent back the message is 216.239.34.10. Since the Authoritative Answer (AA) bit is set, we know that 216.239.34.10 is one of the authoritative name servers for www.google.com. (A domain can have multiple authoritative name servers, and many do as it is preferable for redundancy). Notice that in this packet, there are no Authority or Additional sections.

1
216.239.34.10:53
id 19910
opcode QUERY
rcode NOERROR
flags QR AA
payload 512
;QUESTION
www.google.com. IN A
;ANSWER
www.google.com. 300 IN A 74.125.24.147
www.google.com. 300 IN A 74.125.24.99
www.google.com. 300 IN A 74.125.24.105
www.google.com. 300 IN A 74.125.24.104
www.google.com. 300 IN A 74.125.24.106

The different observed types of authoritative answers we record in our logs are depicted in the diagram below.

Over the past years, it has become a commodity for cybercriminals to register domains through free registrars, or registrars with lax rules with regard to registrant identification information or abuse reports. These domains are then used for all kinds of malicious purposes: phishing or scam sites, malware hosting, distribution or drop sites, or rendezvous points for botnets to receive payloads and directives.

Through the domain registration process, entries for one or multiple name servers authoritative for the new domain are added to the zone of the domain higher up in the DNS hierarchy. For instance, if we register the domain, example.com, and provide ns1.example.com and ns2.example.com as name servers for example.com then new NS records for ns1.example.com and ns2.example.com are added in the .com zone.

The registrant could also use name servers provided by his hosting provider if he does not want or need to deal with managing his own DNS name server.

Then, at the authoritative name servers level (ns1.example.com and ns2.example.com in this example), new A records for the new domain are added (if the new domain needs only to map to IP addresses), where the domain name is made point to one or multiple IP addresses.

These IPs are the hosting machines for the new domain’s content, or could be a proxy to forward traffic to another layer of domains, IPs.

In the case of domains registered for malicious purposes, the hosting machines for the domain can be picked from general-purpose hosting providers or infected machines of unsuspecting users.

New malicious domains discovery method

One of the intuitions behind this method comes from the observation that malicious domains and their respective name servers are often hosted on the same IP or a close range of IPs that are recycled. This obviously can be used by legitimate sites, since acquiring a new IP range is not free, so the hosting usage of IPs is maximized like in the case of virtual private servers. Nevertheless, this practice is rather prevalent in the case of malicious domains and it provides a ground for this method that we explain in the following section.

We parse the authoritative DNS logs and for each authoritative DNS answer, we check the IP of the nameserver that issued the response to see if it exists in our database of malicious IPs. We extract all DNS messages that were issued by nameservers whose IPs have been active recently and that have a high number of malicious domains mapping to them. Then, we mine the Answer section of each message and extract every domain, IP pair when it is an A record. This list of domain, IP pairs constitutes candidates for further investigation to decide if the domains are indeed malicious or not.
We first exclude discovered domains that appear in our domains’ allow list as well as those domains that are already known to be malicious. Our goal is to discover new malicious domains, therefore, the remaning list of domains is checked with several classification heuristics like for example keeping only those domains that are part of dense clusters of malicious domains and IPs, or domains whose names have high lexical perplexity and entropy (check our blogs  “How Likely is a domain to be malicious” of January 8th and “The role of country code top-level domains (ccTLDs) in malware classification” of January 18th), or domains that have been very recently registered and are parked pages.

As an illustrative example, we take a sample of one hour worth of DNS authoritative logs from one resolver in our London data center. That represents about 5,316,930 DNS messages. After applying our domain discovery method, we identify several hundred new suspicious or malicious domains.

A sample of newly discovered malicious domains is presented below:

www[.]alexaa[.]net
www[.]finansium[.]fi
wormix[.]in[.]ua
hancerlilerbakir[.]org
qniceclubluxurysp[.]com
www[.]dvmcomp[.]ru
xn--habervaktm-5ub[.]afaqe2e[.]com
mbkk[.]com
gustavomaciel[.]com
vrguyjjxorlyen[.]com
zzbgzv329sbgn56[.]com
empsqyowjuvvsvrwj[.]com
karenburnsart[.]com
viaton[.]ru
www[.]costarica-luxury-vacations[.]com
www[.]qluxurylinenicesp[.]com
threeamigos[.]com[.]au
sukcesjestblisko[.]cba[.]pl
colume[.]net
www[.]svonni[.]com

The main goal of the Umbrella security labs is to experiment with and apply a wide variety of techniques and algorithms for discovering malicious domains by mining through our Big Data platform that consists of both recursive and authoritative DNS traffic as well as other intelligence sources. At the end, we retain those methods that are the most efficient and effective in bringing up added value in protecting our customers.

Previous Post:

Previous Article

Next Post:

Next Article

Follow Us

  • Twitter
  • Facebook
  • LinkedIn
  • YouTube

Footer Sections

What we make

  • Cloud Security Service
  • DNS-Layer Network Security
  • Secure Web Gateway
  • Security Packages

Who we are

  • Global Cloud Architecture
  • Cloud Network Status
  • Cloud Network Activity
  • OpenDNS is now Umbrella
  • Cisco Umbrella Blog

Learn more

  • Webinars
  • Careers
  • Support
  • Cisco Umbrella Live Demo
  • Contact Sales
Umbrella by Cisco
208.67.222.222+208.67.220.220
2620:119:35::35+2620:119:53::53
Sign up for a Free Trial
  • Cisco Online Privacy Statement
  • Terms of Service
  • Sitemap

© 2023 Cisco Umbrella